久久99亚洲热视_国产精品麻豆一区二区_国产精品美女久久久久久不卡_欧美一区二区三区爱爱

參數資料
型號: MC34151DR2
廠商: ON SEMICONDUCTOR
元件分類: 功率晶體管
英文描述: High Speed Dual MOSFET Drivers
中文描述: 1.5 A 2 CHANNEL, BUF OR INV BASED MOSFET DRIVER, PDSO8
封裝: SOIC-8
文件頁數: 6/12頁
文件大小: 284K
代理商: MC34151DR2
MC34151, MC33151
http://onsemi.com
6
the NPN pull–up during the negative output transient, power
dissipation at high frequencies can become excessive.
Figures 19, 20, and 21 show a method of using external
Schottky diode clamps to reduce driver power dissipation.
Undervoltage Lockout
An undervoltage lockout with hysteresis prevents erratic
system operation at low supply voltages. The UVLO forces
the Drive Outputs into a low state as VCC rises from 1.4 V
to the 5.8 V upper threshold. The lower UVLO threshold is
5.3 V, yielding about 500 mV of hysteresis.
Power Dissipation
Circuit performance and long term reliability are
enhanced with reduced die temperature. Die temperature
increase is directly related to the power that the integrated
circuit must dissipate and the total thermal resistance from
the junction to ambient. The formula for calculating the
junction temperature with the package in free air is:
TJ = TA + PD (R
θ
JA)
where:
TJ = Junction Temperature
TA = Ambient Temperature
PD = Power Dissipation
R
θ
JA =Thermal Resistance Junction to Ambient
There are three basic components that make up total
power to be dissipated when driving a capacitive load with
respect to ground. They are:
PD =PQ + PC + PT
where:
PQ = Quiescent Power Dissipation
PC = Capacitive Load Power Dissipation
PT = Transition Power Dissipation
The quiescent power supply current depends on the
supply voltage and duty cycle as shown in Figure 16. The
device’s quiescent power dissipation is:
PQ = VCC
ICCL (1–D) + ICCH (D)
where:
ICCL = Supply Current with Low State Drive
Outputs
ICCH = Supply Current with High State Drive
Outputs
D = Output Duty Cycle
The capacitive load power dissipation is directly related
to the load capacitance value, frequency, and Drive Output
voltage swing. The capacitive load power dissipation per
driver is:
PC = VCC (VOH – VOL) CL f
where:
VOH = High State Drive Output Voltage
VOL = Low State Drive Output Voltage
CL = Load Capacitance
f = frequency
When driving a MOSFET, the calculation of capacitive
load power PC is somewhat complicated by the changing
gate to source capacitance CGS as the device switches. To aid
in this calculation, power MOSFET manufacturers provide
gate charge information on their data sheets. Figure 17
shows a curve of gate voltage versus gate charge for the ON
Semiconductor MTM15N50. Note that there are three
distinct slopes to the curve representing different input
capacitance values. To completely switch the MOSFET
‘on’, the gate must be brought to 10 V with respect to the
source. The graph shows that a gate charge Qg of 110 nC is
required when operating the MOSFET with a drain to source
voltage VDS of 400 V.
V
Qg, GATE CHARGE (nC)
CGS =
Qg
VGS
16
12
8.0
4.0
00
40
80
120
160
VDS = 100 V
VDS = 400 V
8.9 nF
2.0 nF
MTM15N50
ID = 15 A
TA = 25
°
C
Figure 17. Gate–To–Source Voltage
versus Gate Charge
The capacitive load power dissipation is directly related to
the required gate charge, and operating frequency. The
capacitive load power dissipation per driver is:
PC(MOSFET) = VC Qg f
The flat region from 10 nC to 55 nC is caused by the
drain–to–gate Miller capacitance, occurring while the
MOSFET is in the linear region dissipating substantial
amounts of power. The high output current capability of the
MC34151 is able to quickly deliver the required gate charge
for fast power efficient MOSFET switching. By operating
the MC34151 at a higher VCC, additional charge can be
provided to bring the gate above 10 V. This will reduce the
‘on’ resistance of the MOSFET at the expense of higher
driver dissipation at a given operating frequency.
The transition power dissipation is due to extremely short
simultaneous conduction of internal circuit nodes when the
Drive Outputs change state. The transition power
dissipation per driver is approximately:
PT 9 VCC (1.08 VCC CL f – 8 y 10–4)
PT must be greater than zero.
Switching time characterization of the MC34151 is
performed with fixed capacitive loads. Figure 13 shows that
for small capacitance loads, the switching speed is limited
by transistor turn–on/off time and the slew rate of the
internal nodes. For large capacitance loads, the switching
speed is limited by the maximum output current capability
of the integrated circuit.
相關PDF資料
PDF描述
MC33151VDR2 0.022 UF 10% 50V X7R (0603) CAP TR
MC33151D High Speed Dual MOSFET Drivers
MC33151P High Speed Dual MOSFET Drivers
MC34151D Single Output LDO, 250mA, Fixed(3.3V), Low Noise, Fast Transient Response 6-SOT-223 -40 to 85
MC34151P High Speed Dual MOSFET Drivers
相關代理商/技術參數
參數描述
MC34151DR2G 功能描述:功率驅動器IC 1.5A High Speed Dual Inverting MOSFET RoHS:否 制造商:Micrel 產品:MOSFET Gate Drivers 類型:Low Cost High or Low Side MOSFET Driver 上升時間: 下降時間: 電源電壓-最大:30 V 電源電壓-最小:2.75 V 電源電流: 最大功率耗散: 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Tube
MC34151DR2G-CUT TAPE 制造商:ON 功能描述:MC Series 1.5 A 20 V 100 kOhm SMT High Speed Dual MOSFET Driver - SOIC-8
MC34151P 功能描述:功率驅動器IC 1.5A High Speed Dual RoHS:否 制造商:Micrel 產品:MOSFET Gate Drivers 類型:Low Cost High or Low Side MOSFET Driver 上升時間: 下降時間: 電源電壓-最大:30 V 電源電壓-最小:2.75 V 電源電流: 最大功率耗散: 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Tube
MC34151PG 功能描述:功率驅動器IC 1.5A High Speed Dual Inverting MOSFET RoHS:否 制造商:Micrel 產品:MOSFET Gate Drivers 類型:Low Cost High or Low Side MOSFET Driver 上升時間: 下降時間: 電源電壓-最大:30 V 電源電壓-最小:2.75 V 電源電流: 最大功率耗散: 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Tube
MC34152 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:AC-DC Offline Switching Controllers/Regulators
久久99亚洲热视_国产精品麻豆一区二区_国产精品美女久久久久久不卡_欧美一区二区三区爱爱
男人的天堂亚洲在线| 色综合中文字幕国产 | 欧美日韩中文字幕一区二区| 在线观看国产精品网站| 欧美日韩一卡二卡三卡| 久久网这里都是精品| 国产精品福利一区| 日韩精品视频网| 国产一区二区三区四区五区入口| 91视频一区二区| 一本久道久久综合狠狠爱| 久久精品一区| 精品国产电影一区二区| 337p粉嫩大胆噜噜噜噜噜91av| 国产日韩v精品一区二区| 亚洲综合区在线| 成人福利视频在线看| 激情久久婷婷| 欧美无人高清视频在线观看| 国产视频亚洲色图| 免费高清视频精品| 成人动漫视频在线| 国产精品一区亚洲| 亚洲乱码日产精品bd| 成人黄色免费短视频| 日本一区二区三区四区在线视频| 欧美午夜精品| 亚洲欧美自拍偷拍| 欧美久久影院| 国产精品久久久久久久久久免费看| 亚洲午夜极品| 亚洲精品国产无天堂网2021| 国产亚洲在线| 日本欧美一区二区在线观看| 黄色免费成人| 婷婷综合五月天| 国产一区二区三区黄| 国产精品九九| 精品1区2区在线观看| 久久精品国产澳门| 中国成人在线视频| 久久久天堂av| 国产一区二区视频在线| av成人天堂| 欧美精品一区二区久久久| 亚洲一区二区视频| 精品91视频| 国产免费成人在线视频| 国产成人啪免费观看软件| 噜噜噜91成人网| 中文字幕一区av| 成人网在线播放| 欧美高清www午色夜在线视频| 日韩精品一区第一页| 黄色成人在线网址| 久久亚区不卡日本| 国产精品 欧美精品| 91成人在线免费观看| 国产精品嫩草影院av蜜臀| 波多野结衣的一区二区三区| 日韩一级免费一区| 国产乱色国产精品免费视频| 欧美日韩亚洲综合在线 欧美亚洲特黄一级 | 欧美一区二区三级| 国产老女人精品毛片久久| 在线播放国产精品二区一二区四区| 美国毛片一区二区三区| 欧美三级欧美一级| 麻豆传媒一区二区三区| 欧美日韩成人综合在线一区二区| www.视频一区| 亚洲欧洲一区二区三区| 欧美亚洲一区二区在线| 欧美日韩1080p| 美女脱光内衣内裤视频久久网站| 久久伊99综合婷婷久久伊| 亚洲永久视频| 99久久免费国产| 日韩av不卡在线观看| 国产亚洲精品福利| 在线观看区一区二| 亚洲特色特黄| 欧美婷婷六月丁香综合色| 欧美欧美欧美欧美| 欧美成人一区二免费视频软件| 久久久久99| 国产精品羞羞答答xxdd| 久久毛片高清国产| 亚洲激情精品| 亚洲午夜激情网页| 色偷偷久久一区二区三区| 国产剧情一区二区| 中文乱码免费一区二区| 国产日韩欧美一区在线| 婷婷综合五月天| 欧美一区二区啪啪| 欧美日韩国产免费观看| 亚洲高清视频的网址| 日本电影欧美片| 国产suv精品一区二区三区| 中国色在线观看另类| 嫩草成人www欧美| 国产激情91久久精品导航| 国产精品乱码久久久久久| 国产女主播一区二区三区| 国产伦精品一区二区三区免费 | 久久久亚洲精品石原莉奈| 一本色道久久精品| 国产一区999| 亚洲人成在线播放网站岛国| 色狠狠色狠狠综合| 成人性视频网站| 亚洲线精品一区二区三区| 777奇米四色成人影色区| 欧美日韩精品免费看| 伦理电影国产精品| 日本一区二区三区dvd视频在线| 性欧美videos另类喷潮| caoporm超碰国产精品| 五月天欧美精品| 日韩高清欧美激情| 久久婷婷亚洲| 色婷婷综合视频在线观看| 亚洲线精品一区二区三区| 欧美高清激情brazzers| 亚洲欧美日韩精品在线| 91网站最新地址| 国产精品一二三区| 日韩国产在线一| 亚洲伊人伊色伊影伊综合网| 中文字幕精品三区| 久久久电影一区二区三区| 日韩欧美一区中文| 日韩女优毛片在线| 国产精品一区二区黑丝| 国内一区二区在线| 欧美精品日日鲁夜夜添| 一本一本a久久| 欧美全黄视频| 国产不卡一区视频| 免费一级片91| 亚洲美女屁股眼交3| 久久久久综合网| 9191久久久久久久久久久| 久久国产日韩欧美| 精品不卡一区| 欧美jizzhd精品欧美巨大免费| 国产精品66部| 久久精品国产亚洲高清剧情介绍| 亚洲少妇屁股交4| 久久久精品免费网站| 日韩女优视频免费观看| 欧美日韩美女一区二区| 久久看片网站| 国产日韩欧美精品| 亚洲狼人精品一区二区三区| 成人成人成人在线视频| 国产在线精品免费| 久久97超碰国产精品超碰| 青青青爽久久午夜综合久久午夜| 曰韩精品一区二区| 国产精品三级视频| 欧美国产日产图区| 国产欧美一区二区在线观看| 久久久久久久久免费| 欧美成人a∨高清免费观看| 欧美高清www午色夜在线视频| 欧美三级电影在线看| 欧美日韩高清影院| 91精品国产全国免费观看| 91精品国产综合久久香蕉的特点| 欧美午夜在线观看| 欧美日韩一区三区| 日韩一区二区三区视频在线| 日韩精品一区二| 久久一区二区三区国产精品| 国产欧美视频在线观看| 亚洲精品中文在线影院| 一区二区日韩免费看| 一区二区三区成人精品| 亚洲一区二区三区涩| 久久综合九色综合久99| 色狠狠色狠狠综合| 欧美猛男超大videosgay| 欧美一区二区成人6969| 久久久91精品国产一区二区精品| 国产亚洲精品久| 亚洲丝袜精品丝袜在线| 亚洲成人av资源| 久久电影网电视剧免费观看| 一区二区三区在线视频播放| 亚洲视频欧美在线| 福利一区二区在线| 欧美+日本+国产+在线a∨观看| 国产99久久久精品| 国产综合网站| 色屁屁一区二区| 91精品蜜臀在线一区尤物| 国产日韩欧美亚洲| 亚洲一区在线观看网站|