久久99亚洲热视_国产精品麻豆一区二区_国产精品美女久久久久久不卡_欧美一区二区三区爱爱

參數資料
型號: MC34151P
廠商: ON SEMICONDUCTOR
元件分類: MOSFETs
英文描述: High Speed Dual MOSFET Drivers
中文描述: 1.5 A 2 CHANNEL, BUF OR INV BASED MOSFET DRIVER, PDIP8
封裝: PLASTIC, DIP-8
文件頁數: 6/12頁
文件大小: 284K
代理商: MC34151P
MC34151, MC33151
http://onsemi.com
6
the NPN pull–up during the negative output transient, power
dissipation at high frequencies can become excessive.
Figures 19, 20, and 21 show a method of using external
Schottky diode clamps to reduce driver power dissipation.
Undervoltage Lockout
An undervoltage lockout with hysteresis prevents erratic
system operation at low supply voltages. The UVLO forces
the Drive Outputs into a low state as VCC rises from 1.4 V
to the 5.8 V upper threshold. The lower UVLO threshold is
5.3 V, yielding about 500 mV of hysteresis.
Power Dissipation
Circuit performance and long term reliability are
enhanced with reduced die temperature. Die temperature
increase is directly related to the power that the integrated
circuit must dissipate and the total thermal resistance from
the junction to ambient. The formula for calculating the
junction temperature with the package in free air is:
TJ = TA + PD (R
θ
JA)
where:
TJ = Junction Temperature
TA = Ambient Temperature
PD = Power Dissipation
R
θ
JA =Thermal Resistance Junction to Ambient
There are three basic components that make up total
power to be dissipated when driving a capacitive load with
respect to ground. They are:
PD =PQ + PC + PT
where:
PQ = Quiescent Power Dissipation
PC = Capacitive Load Power Dissipation
PT = Transition Power Dissipation
The quiescent power supply current depends on the
supply voltage and duty cycle as shown in Figure 16. The
device’s quiescent power dissipation is:
PQ = VCC
ICCL (1–D) + ICCH (D)
where:
ICCL = Supply Current with Low State Drive
Outputs
ICCH = Supply Current with High State Drive
Outputs
D = Output Duty Cycle
The capacitive load power dissipation is directly related
to the load capacitance value, frequency, and Drive Output
voltage swing. The capacitive load power dissipation per
driver is:
PC = VCC (VOH – VOL) CL f
where:
VOH = High State Drive Output Voltage
VOL = Low State Drive Output Voltage
CL = Load Capacitance
f = frequency
When driving a MOSFET, the calculation of capacitive
load power PC is somewhat complicated by the changing
gate to source capacitance CGS as the device switches. To aid
in this calculation, power MOSFET manufacturers provide
gate charge information on their data sheets. Figure 17
shows a curve of gate voltage versus gate charge for the ON
Semiconductor MTM15N50. Note that there are three
distinct slopes to the curve representing different input
capacitance values. To completely switch the MOSFET
‘on’, the gate must be brought to 10 V with respect to the
source. The graph shows that a gate charge Qg of 110 nC is
required when operating the MOSFET with a drain to source
voltage VDS of 400 V.
V
Qg, GATE CHARGE (nC)
CGS =
Qg
VGS
16
12
8.0
4.0
00
40
80
120
160
VDS = 100 V
VDS = 400 V
8.9 nF
2.0 nF
MTM15N50
ID = 15 A
TA = 25
°
C
Figure 17. Gate–To–Source Voltage
versus Gate Charge
The capacitive load power dissipation is directly related to
the required gate charge, and operating frequency. The
capacitive load power dissipation per driver is:
PC(MOSFET) = VC Qg f
The flat region from 10 nC to 55 nC is caused by the
drain–to–gate Miller capacitance, occurring while the
MOSFET is in the linear region dissipating substantial
amounts of power. The high output current capability of the
MC34151 is able to quickly deliver the required gate charge
for fast power efficient MOSFET switching. By operating
the MC34151 at a higher VCC, additional charge can be
provided to bring the gate above 10 V. This will reduce the
‘on’ resistance of the MOSFET at the expense of higher
driver dissipation at a given operating frequency.
The transition power dissipation is due to extremely short
simultaneous conduction of internal circuit nodes when the
Drive Outputs change state. The transition power
dissipation per driver is approximately:
PT 9 VCC (1.08 VCC CL f – 8 y 10–4)
PT must be greater than zero.
Switching time characterization of the MC34151 is
performed with fixed capacitive loads. Figure 13 shows that
for small capacitance loads, the switching speed is limited
by transistor turn–on/off time and the slew rate of the
internal nodes. For large capacitance loads, the switching
speed is limited by the maximum output current capability
of the integrated circuit.
相關PDF資料
PDF描述
MC33179DR2G Low Power, Low Noise Operational Amplifiers
MC33178DG Low Power, Low Noise Operational Amplifiers
MC33178DMR2 Low Power, Low Noise Operational Amplifiers
MC33178DMR2G Low Power, Low Noise Operational Amplifiers
MC33178DR2 Low Power, Low Noise Operational Amplifiers
相關代理商/技術參數
參數描述
MC34151PG 功能描述:功率驅動器IC 1.5A High Speed Dual Inverting MOSFET RoHS:否 制造商:Micrel 產品:MOSFET Gate Drivers 類型:Low Cost High or Low Side MOSFET Driver 上升時間: 下降時間: 電源電壓-最大:30 V 電源電壓-最小:2.75 V 電源電流: 最大功率耗散: 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Tube
MC34152 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:AC-DC Offline Switching Controllers/Regulators
MC34152D 功能描述:功率驅動器IC 1.5A High Speed Dual RoHS:否 制造商:Micrel 產品:MOSFET Gate Drivers 類型:Low Cost High or Low Side MOSFET Driver 上升時間: 下降時間: 電源電壓-最大:30 V 電源電壓-最小:2.75 V 電源電流: 最大功率耗散: 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Tube
MC34152DG 功能描述:功率驅動器IC 1.5A High Speed Dual Non-Inverting MOSFET RoHS:否 制造商:Micrel 產品:MOSFET Gate Drivers 類型:Low Cost High or Low Side MOSFET Driver 上升時間: 下降時間: 電源電壓-最大:30 V 電源電壓-最小:2.75 V 電源電流: 最大功率耗散: 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:SOIC-8 封裝:Tube
MC34152DG 制造商:ON Semiconductor 功能描述:Logic IC
久久99亚洲热视_国产精品麻豆一区二区_国产精品美女久久久久久不卡_欧美一区二区三区爱爱
欧美性感一区二区三区| 亚洲黄色视屏| 亚洲在线播放电影| 日韩一区中文字幕| 黄色在线成人| 亚洲欧洲韩国日本视频| 红杏aⅴ成人免费视频| 国产精品久久久久久久久久久免费看| 91免费国产在线| 国产亚洲一区二区三区| 午夜精品婷婷| 自拍偷拍国产精品| 亚洲裸体俱乐部裸体舞表演av| 一区二区三区在线观看网站| 国产美女精品| 日本强好片久久久久久aaa| 欧美午夜精品免费| 国内国产精品久久| 欧美一区二区三区视频在线| 成人爽a毛片一区二区免费| 久久五月婷婷丁香社区| 欧美视频导航| 亚洲激情校园春色| 亚洲欧美日韩国产综合精品二区| 一区二区三区精品久久久| 男人的天堂亚洲在线| 日韩国产欧美在线视频| 在线观看一区二区视频| 国产精品一级片| 久久综合五月天婷婷伊人| 欧美一区二区三区四区在线观看地址| 中文字幕乱码一区二区免费| 国产精品亚洲产品| 麻豆精品一区二区| 日韩一级精品视频在线观看| 91丨porny丨户外露出| 亚洲色图一区二区三区| 久久久青草婷婷精品综合日韩| 蜜桃精品视频在线观看| 日韩区在线观看| 色综合色狠狠天天综合色| 亚洲精品写真福利| 久久亚洲欧美| 国产高清精品网站| 国产精品理论在线观看| 另类天堂av| 国产成人免费网站| 亚洲欧美一区二区在线观看| 久久五月激情| 国产精品一二三四五| 国产欧美日韩在线看| 国产精品一卡| 国产乱码精品一区二区三区五月婷| 久久亚洲私人国产精品va媚药| 亚洲精品国产精品国自产观看| 手机精品视频在线观看| 日韩三级在线免费观看| 在线精品观看| 久久成人免费网站| 国产婷婷色一区二区三区四区| 亚洲一区二区三区免费在线观看| 国产精一区二区三区| 中文字幕一区二区三中文字幕| 色婷婷精品久久二区二区蜜臂av| 成人av电影在线| 亚洲精品欧美激情| 69堂国产成人免费视频| 很黄很黄激情成人| 日本色综合中文字幕| 欧美tickle裸体挠脚心vk| 一区二区三区精品国产| 国模大尺度一区二区三区| 国产精品欧美综合在线| 色噜噜狠狠一区二区三区果冻| 成人av资源下载| 亚洲成人av一区二区| 精品盗摄一区二区三区| 亚洲综合好骚| 99久久99久久精品免费看蜜桃| 亚洲电影一级黄| 精品奇米国产一区二区三区| 亚洲永久免费| 97精品电影院| 老司机精品视频一区二区三区| 久久精品日韩一区二区三区| 色域天天综合网| 欧美视频久久| 精品一区二区成人精品| 亚洲女人的天堂| 欧美一个色资源| 亚洲免费中文| 91网站在线播放| 久久精品999| 一区二区三区欧美| 欧美xxxxxxxx| 久热精品在线| 国内精品嫩模av私拍在线观看| 久久99精品久久久久久动态图| 1024精品合集| 欧美一区二区美女| 免费久久99精品国产自| 欧美精品一卡| 国产91丝袜在线观看| 日韩精品免费专区| 日韩毛片在线免费观看| 欧美tk—视频vk| 在线观看欧美日本| 在线成人亚洲| 99久久免费国产| 精品亚洲免费视频| 夜夜嗨av一区二区三区四季av| 国产三级欧美三级日产三级99| 精品视频在线看| 国产毛片久久| 欧美久久久久久久| 高潮精品一区videoshd| 欧美bbbbb| 亚洲一区二区三区国产| 中文字幕乱码亚洲精品一区| 日韩精品一区二区三区三区免费| 色av成人天堂桃色av| 国产精品美女久久久| 欧美黄在线观看| 丁香网亚洲国际| 玖玖九九国产精品| 亚洲国产精品一区二区尤物区| 亚洲欧洲日韩一区二区三区| 久久免费午夜影院| 日韩免费高清av| 欧美视频一区二区三区四区| 亚洲永久网站| 国产日产精品一区二区三区四区的观看方式| 91猫先生在线| av一区二区三区在线| 国产精品一区三区| 久久精品国产精品青草| 午夜久久福利影院| 亚洲免费在线观看| 欧美国产激情一区二区三区蜜月| 欧美精品一区男女天堂| 日韩一区二区三区在线视频| 欧美日韩一卡二卡三卡| 欧美在线播放高清精品| 色噜噜狠狠成人网p站| 亚洲一区二区精品在线| 国产日韩免费| 一本久道久久综合婷婷鲸鱼| 99www免费人成精品| 99精品国产在热久久婷婷| 亚洲欧洲日本一区二区三区| 国产精品hd| 欧美精品一区二区三区在线看午夜| 不卡高清视频专区| 不卡一区中文字幕| 成a人片国产精品| 成人午夜视频网站| 丰满亚洲少妇av| 国产白丝精品91爽爽久久| 国产盗摄女厕一区二区三区| 久久99九九99精品| 韩国女主播成人在线| 国内精品视频一区二区三区八戒| 九一九一国产精品| 国产在线观看一区二区| 国产伦精品一区二区三区视频青涩| 国产自产v一区二区三区c| 国产又黄又大久久| 丁香一区二区三区| 91色porny| 好吊视频一区二区三区四区| 影音先锋一区| 国内揄拍国内精品久久| 亚洲电影av| 国产精品日韩欧美一区二区| 亚洲女优在线| 91久久精品一区二区三| 欧美中文字幕一区| 欧美日韩一区不卡| 日韩欧美中文字幕精品| 久久综合av免费| 国产精品久线观看视频| 亚洲精品国产精品乱码不99| 一区二区三区视频在线看| 亚洲图片一区二区| 视频在线观看91| 精品午夜一区二区三区在线观看 | 欧美伦理电影网| 欧美日韩mp4| 日韩免费观看高清完整版| 久久久久久99久久久精品网站| 中国av一区二区三区| 一区av在线播放| 日韩在线一区二区三区| 韩国v欧美v亚洲v日本v| 成人av集中营| 伊人色综合久久天天五月婷| 久久精品一区二区国产| 777欧美精品| 欧美国产激情二区三区 | 有坂深雪av一区二区精品|